In vivo polarization of IFN-gamma at Kupfer and non-Kupfer immunological synapses during the clearance of virally infected brain cells.

نویسندگان

  • Carlos Barcia
  • Kolja Wawrowsky
  • Robert J Barrett
  • Chunyan Liu
  • Maria G Castro
  • Pedro R Lowenstein
چکیده

Kupfer-type immunological synapses are thought to mediate intercellular communication between antiviral T cells and virally infected target Ag-presenting brain cells in vivo during an antiviral brain immune response. This hypothesis predicts that formation of Kupfer-type immunological synapses is necessary for polarized distribution of effector molecules, and their directed secretion toward the target cells. However, no studies have been published testing the hypothesis that cytokines can only form polarized clusters at Kupfer-type immunological synapses. Here, we show that IFN-gamma and granzyme-B cluster in a polarized fashion at contacts between T cells and infected astrocytes in vivo. In some cases these clusters were found in Kupfer-type immunological synapses between T cells and infected astrocytes, but we also detected polarized IFN-gamma at synaptic immunological contacts which did not form Kupfer-type immunological synaptic junctions, i.e., in the absence of polarization of TCR or LFA-1. This indicates that TCR signaling, which leads to the production, polarization, and eventual directed secretion of effector molecules such as IFN-gamma, occurs following the formation of both Kupfer-type and non-Kupfer type immunological synaptic junctions between T cells and virally infected target astrocytes in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo.

To analyze the in vivo structure of antigen-specific immunological synapses during an effective immune response, we established brain tumors expressing the surrogate tumor antigen ovalbumin and labeled antigen-specific anti-glioma T cells using specific tetramers. Using these techniques, we determined that a significant number of antigen-specific T cells were localized to the brain tumor and su...

متن کامل

T Cells' Immunological Synapses Induce Polarization of Brain Astrocytes In Vivo and In Vitro: A Novel Astrocyte Response Mechanism to Cellular Injury

BACKGROUND Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular c...

متن کامل

In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain

The microanatomy of immune clearance of infected brain cells remains poorly understood. Immunological synapses are essential anatomical structures that channel information exchanges between T cell-antigen-presenting cells (APC) during the priming and effector phases of T cells' function, and during natural killer-target cell interactions. The hallmark of immunological synapses established by T ...

متن کامل

Interferon Gamma Unresponsiveness Due to Down-Regulation of IFN-γR Expression in Experimental Cutaneous Leishmaniasis

It is now well documented that interferon gamma (IFN-γ) is the indispensable cytokine for inducing protective immunity against experimental and human cutaneous leishmaniaisis. The importance of IFN-γ receptor (IFN-γR) has also been studied. In the present study, we made attempts to find out whether L. major infection is able to alter the expression of IFN-γR in vivo. In addition, we studied the...

متن کامل

Kupfer-type immunological synapses in vivo: Raison D'être of SMAC.

T cells engage with antigen-presenting cells to form immunological synapses. These intimate contacts are characterized by the complex arrangement of molecules at the intercellular interface, which has been described as the supramolecular activation cluster (SMAC). However, due to T cells functioning without SMAC formation and the difficulties of studying these complex arrangements in vivo, its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 180 3  شماره 

صفحات  -

تاریخ انتشار 2008